A Dimensionless Solution to Radiation and Turbulent Natural Convection in Square and Rectangular Enclosures
نویسندگان
چکیده
The effects of natural convection with and without the interaction of surface radiation in square and rectangular enclosures have been studied, numerically and theoretically. The analyses were carried out over a wide range of enclosure aspect ratios ranging from 0.0625 to 16, including square enclosures in sizes from 40cm to 240cm, with cold wall temperatures ranging from 283 to 373 K, and hot to cold temperature ratios ranging from 1.02 to 2.61. The work was carried out using four different fluids whose properties are varying with temperature. FLUENT software was used to carry out the numerical study. Turbulence was modelled using the RNG k-ε model with a non-uniform grid. The Discrete Transfer Radiation Model (DTRM) was used for radiation simulation. A correlation equation for the new dimensionless group represented by the ratio of natural convection to radiation, as a function of Nusselt, Grashof, Prandtl numbers and temperature ratio also, the average Nusselt number without radiation as a function of Grashof and Prandtl numbers have been provided along with the constants needed to use them as a function of temperature ratio. This provides a generalised equation for heat transfer in square and rectangular enclosures both with and without radiation.
منابع مشابه
Interaction of laminar natural convection and radiation in an inclined square cavity containing participating gases
Two-dimensional numerical study of flow and temperature fields for laminar natural convection and radiation in the inclined cavity is performed in the present work. The walls of the square cavity are assumed kept at constant temperatures. An absorbing, emitting, and scattering gray medium is enclosed by the opaque and diffusely emitting walls. The set of governing equations, including conservat...
متن کاملNatural Convection at Different Prandtl Numbers in Rectangular Cavities with a Fin on the Cold Wall
The natural convection in differentially heated rectangular cavities with a fin attached to the cold wall was investigated numerically. The top and the bottom horizontal walls of the cavities were insulated while their left and the right vertical walls were maintained at a constant temperature Th and Tc, respectively with Th > Tc. The governing equations written in terms of the primitive variab...
متن کاملThermal Assessment of Naturally Cooled Electronic Enclosures With Rectangular Fins
Passive heat transfer from enclosures with rectangular fins is studied both experimentally and theoretically. Several sample enclosures with various lengths are prepared and tested. To calibrate the thermal measurements and the analyses, enclosures without fins (“bare” enclosures) are also prepared and tested. Surface temperature distribution is determined for various enclosure lengths and heat...
متن کاملEffect of Thermal Conductivity and Emissivity of Solid Walls on Time-Dependent Turbulent Conjugate Convective-Radiative Heat Transfer
In the present study, the conjugate turbulent free convection with the thermal surface radiation in a rectangular enclosure bounded by walls with different thermophysical characteristics in the presence of a local heater is numerically studied. The effects of surface emissivity and wall materials on the air flow and the heat transfer characteristics are the main focus of the present investigati...
متن کاملAssessment of Thermal Performance of Electronic Enclosures with Rectangular Fins: a Passive Thermal Solution
Passive heat transfer from enclosures with rectangular fins is studied both experimentally and theoretically. Several sample enclosures with various lengths are prepared and tested. To calibrate the thermal measurements and the analyses, enclosures without fins (“bare” enclosures) are also prepared and tested. Surface temperature distribution is determined for various enclosure lengths and heat...
متن کامل